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In the Comment by Zumofen and KlaftéfK) (Phys. Rev. E, preceding papéhne authors, comparing their
results to those in a publication of oUfenkadda, Kassibrakis, White, and ZaslavéBKWZ)] [Phys. Rev.
E 55, 4909 (1997], state that “disagreement is regarded as resulting from conceptual differences in the
approaches rather than from numerical inaccuracies.” The papers discuss superdiffusion phenomena for the
standard map. In fact, we will show here that the numerical results of ZK contradict neither the numerical
results given in BKWZ nor the theory referenced there. At the same time we will indicate precisely why the
theory used in ZK has restricted applicability and is not universal. We also provide additional analytical and
numerical results in support of our conclusiof81063-651X99)06803-9

PACS numbeps): 05.45—a, 47.52+j, 05.60—k, 47.53+n

Our reply is organized into sections on transport in phase D, s = ((|Ax| %0/ AtPo)) (5)
space with a self-similar structure, oscillations in distribution oo
data, comparison of the numerical results of Zumofen angs gefined through an elementary stéyx| performed during
Klafter (ZK) [1] with those of Benkadda, Kassibrakis, White, time intervalAt in the same sense as for the derivation of the
and ZaslavskyBKWZ) [2], limitations of the theory used in  ysyal FPK equation. There exists a very detailed discussion

[1], and some conclusions. of limitations to the applicability of Eq(1), and of how the
limits x,t—o should be considered to obtain space-time
I. SELF-SIMILARITY self-similarity (see[3,4], and references therginMore im-

portantly, the existence of different intermediate asymptotics

After numerous investigations of different area-preservingh time was demonstrated for all kinds of distributions and
maps and equations, it became clear that partic|e transpd;h]Eir moments. This necessitates a careful use of the expo-
can be non-Gaussian, i.e., anomaldsee[3,4], and refer- Nentsu, ag,Bo and any other significant parameters in at-
ences therein A phenomenological approach to the problemtempts to understand the consequences of a proposed mecha-
was proposed, based on a fractional generalization of theism for the origin of the anomalous transport.
Fokker-Planck-Kolmogoroy5] (FFPK) equation which we

present for the one dimensional case in the form Il. OSCILLATIONS
9PoP(x,t) 99P(x,1) There were numerous observations thds not universal
otk T “0/30(9|X—|‘10 (X,t—00), 1 and depends on a control parameiteof the system. More

precisely it was shown that depends on the phase space
structure, on the vicinity of the system to some bifurcation
values ofK, etc.(see references iI8,4]). A crucial question
is to find ag, By in Egs.(1) and(2) from first principles, i.e.,

with fractional ¢, Bq, giving

agy B
(Ix|*) Dagp ™ @) from dynamics, or more generally the setaf,3; in
or
(|x|%0)=constx >, Dp t¥i (6)
(X7~ D8 1+, 3 ’
including the possibility of a spread @ near By, which
with transport exponent actually is the caséWe simplify the situation and consider a
fixed ag which also can be spread.
n=2pB0/ag (4) Since theuw = u(K) is nonuniversal, we can selecspe-

cial value of Kfor which a convenient approach can work.
if we accept the existence of the asymptotic self-similarity ofFor the standard map we selekt=K.=6.476939... for
P(x,t). The coefficient which there exists a hierarchical set of islands 5-11-11-11...
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in the phase spad@]. These islands belong to the accelera-cesseq10]|, Weierstrass random walk 1], dynamical sys-
tor mode, and their boundaries are sticky, giving rise to aems[12—-14, and other casetee review15]). The log-
superdiffusion withu>1. There are other special values of time periodicity was observed in our simulatiof4,2,16
K in [3,4] which one can use, but the analytical approachfor chaotic dynamical systems aitchppears again if1] in
should be specified depending on the situation. their Figs. 2—4(although without referencesThese simula-

In [6,7,3,4 a renormalization grougRG) approach was tions nontrivially confirm the existence of the RG property,
introduced for the case of the hierarchical island structureand also raise the immediate questidhat slope of the
The FFPK equation should be invariant under Bx¢rans- ~ oscillating curve should be compared to any given theory?
form Even averaging over time is not trivial and depends on the

time window.
R: Ax'=AgYAx, At'=\At, )
) . , Il. DATA COMPARISON

whereAs<1 is a scaling parameter for the island area and

A1>1 is the same for the period of an orbit near the island Now we would like to discuss the numbers resulting from
elliptic point. Both\ s and\ 1 can be obtained from the equa- the simulations. Equatio(10) for u, obtained in[6,7], was
tions of motion or from a simulation with high accuracy. applied to different cases when the renormalization theory
Applying R" to Eq. (1) or Eq. (5) one can obtain a fixed for the island hierarchy can be applied. In particular, this

point value in the limitn— o comparison was made 2] for the standard map witkK
=K,. The results werg.=1.42+0.15 (simulation and 1.44
lim ()\5“0’2/)\4*)%1 (8)  *=0.02[from Eq. (10)]. It is seen from Fig. 4 of1] that
n—oo ne(1.3-1.5 due to oscillations, which does not contradict
. our resultdit is even mentioned in Fig. 4 ¢fi] that u=1.4).
or for solutions of Eq(8) Assuming the power tail distributions for the Poincare
L recurrence distributionP,.(t) and exit-time distribution
Bi=5aopt2mifinng (j=01,..), (9 Pexit(t),
with Pred) =117, Peyil(t) ~ 1A, (13
=28l ao=|IN\g/IN\7. (10) for the same case of hierarchical islands of the accelerator

mode, it was shown if3,4] that
Applying Eq.(9) to Eq. (6), we obtain
y=2+pu. (14
([x[“0) = const Dy t* a2
It was also explained ifi3,4] that for a careful choice of a
domain near an island boundafip the trapping zoneone
has y,=v and theny=y;=3.42+0.15, which is in good
agreement with the valug=3.5 obtained irj2]. The reason
(1D for this comment was explained in great detail472]: dis-
ftributions of the Poincareecurrences “collect” global in-
formation about the full phase space, while the exit-time dis-
tribution describes properties of a local domain from which
exits are considered\evertheless, the articlé] attacks the
T=In\r. (12 formulay,;=2+pu [see Eq(4) of [1] ], neglecting our com-
ments and without appropriate restrictions in application of
The formula Eq(11) provides an analytical expression fer  the formula. That leads to an inferred discrepancy of some
(see[3,4]) as well as log-periodicin time) dependence of numerical results, which, in factloes not exist
transport and all other probability distribution functions Let us compare the simulation data[df (it is Fig. 2 of
(PDP including distributions of the Poincareecurrences [1] which is relevant to usto our results of2]. The g;c(t)
and exit times since all PDF satisfy the same RG transfornin [1] corresponds to ouP.(t) in Eq. (13). First of all,
Eq. (7) (see alsd6,7]). from Fig. 2 of[1], we havey,j,—1=1.2+0.1 as the minimal
We also obtained the periad, which can be compared to value andy.—1=2.2+0.1 as the maximal valu¢The —1
the simulation results iy, is known. The formula Eq.l1) is  occurs to convert between integral and differential probabil-
a new one for the explanation of chaotic anomalous transpoity distributions) The large rangeymin, ¥Ymax iS due to the
in dynamical systems, and its more detailed analysis will bescillations. At this point we have to emphasize that all our
considered elsewhere. Here, we have to mention only thastimations ofy were based on the separation of different
the periodT,, in Eq. (11) is proportional to Il\;. Just this  periods, or hierarchical zones, and on considering separately
property was derived if3,4] and confirmed numerically to  ymi, (see Fig. 7 of2]) and y,.x (see Fig. 8 of(2]). The
high accuracy for three periods both for the web rha@]  values y.x and ymin from Fig. 2 of[1] coincide with our
and for the standard mdg@]. The phenomenon of log peri- results in Figs. 7 and 8 irf2] within the error bars. The
odicity is well known in the theory of phase transitiof@, = maximal slope(see Fig. 8 of2]) corresponds to the period
structures with fractal geometf®], branching random pro- of time of the deepest penetration of flights into the hierar-

X 1+2§ Dy ID 27
j:1( 5,/ D) €0 nae

The expression obtained, in addition to the power law o
transport with exponeni, has a Irt-periodic dependence
with period
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FIG. 1. A depiction of a flight trajectory of the length 1.2
X 10" steps(time) on the torus(x,p; mod 2m) displays a broad
distribution in the phase space.

FIG. 2. Distribution of coordinate®0 bing for the same flight
as in Fig. 1 shows about 10% width relative to the full phase space
and about 1% for peaks that correspond to penetration of the flight

chical island structure. Note that only a specific range of timégaod;hii lsz?;a”fr island chain of the next generatidark tiny is-

values can be discussed, the truly asymptotic value of the

slope is not determined by the data, and asymptotic conver-

gence arguments cannot bound the slope for any finite lengt€ flight in the phase space with additional trapping in tiny
experiment. next generation islands. In Figs. 2 and 3 we see distributions

Concluding this part of the discussion, we arrive at ap-¥ (X), ¥(p) for the same flight. These distributions are very
proximately the same values farandy if one considers the broad ant_j the same bread_th occurs in the dlstrlb_uuon of the
maximal values of the oscillating slopes of the distributions,2cceleratiora=Ap/At=K sinx. Observing other flights we
as was remarked and emphasized in all our publications irconclude that there is always a dispersiomwhich for large
cluding the criticized articlé2]. In other words, the differ- OPservational t|m€10~1_06 creates a huge dispersion in the
ence in the results of simulations[ig] and[1], is negligible, ~argument of thes function. This gives a limitation for the
contradicting the claim of1] if one makes a correct com- Strong coupling model df17,18 to
parison.

to=<10°-10. (17
IV. LIMITATIONS TO KZ THEORY

Let us comment on the theory that has been used iffhe &function condition with constant or constant a can
[17,18 and[1]. We see two serious restrictions to the theory.be used only to describe processes in which the computa-
The first one is related to Eq&) and (9) of [1] where the tional (or experimental) time is fairly short.
trapping-time distribution

P(r,t)~t=7"25(r —vt) (15 5

45-

is proportional to a function with constant velocity. This
assumption is mentioned following E@5) of [1]. In the
standard map for the value.=6.476 939 corresponding to
the accelerator mode the flights areprand the “velocity”
is an acceleratioa=K sinx, so in our case their distribution
actually has the form

p(p,t)~t"36(p—at),

with constant acceleratioa

(16)

Howeveruse of distribution (16) or (15) for long time is
not valid Natural limitations for the time of applicability can
be obtained in different ways. Here, a straightforward simu-
lation will be used. FolK=K_ we pick a trajectory with
flights, cut a piece of the trajectory that corresponds to one
flight of a length of 1.X 10* steps, and put this part of the
trajectory on the torusx;p) e (0,27). The results are pre-
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FIG. 3. The same as in Fig. 2 except for momentum. Ordinate is

sented in Figs. 1-3. In Fig. 1 we see a fairly strong spread o values of 10°2.
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The second restriction comes from the way the result Eq@) We have derived the log-time oscillations for the PDF

(11) of [1] was obtained 17,18 (see also references in
[1]). Starting from Eq(7) of [1] and performing an inverse
Fourier transform, the authors ¢1] use an expansion of

exp(kr) in powers ofk. Because of the presence é(r
—ot) this means the occurrence of terms lika)(. Then

the limit k— 0, t—oo is not properly defined and there are

and the moments, which were observed befolRird]

and which also are displayed in Figs. 2—4[af. The
derivation assumes the existence of the RG transform
Eqg. (7). In this sense the curves, obtained/ i, con-
firm our previous results with more extensive compu-
tations.

different asymptotics. Their choice depends on a model andp) The values ofu and y,in, Ymax Obtained from Fig. 2 of

particularly, on the velocity spread valda) or the accelera-
tion spreadAa in the case of the accelerator mode. The

origin of this difficulty is due to the double limitr(t) —o

simultaneously but in different ways depending on the

model.
We also need to mention that the result Etl) of [1],
even with restrictions, does not predict valuesucdnd y but

makes their connection within a fairly narrow interval due to

the log-time oscillations.

V. CONCLUSION

In conclusion to our Reply, we would like to mention the

following points.

[1] reasonably coincide with those obtained 2 if the
same things are compared.

(c) Our simulation shows that the strong coupling model
of [1] using the &function approximation for flights
fails for a large time (>10°—10°) due to the spread-
ing of the velocity and acceleration of flights.

(d) The conflict of results appears|ifi] when the theory of
[17,18 is applied to a large time interval where the
theory is not applicable. We assume that an additional
time applicability restriction exists for the model [df]|
arising from the conditions for the power expansion of
the expikr) used in[17,18. We plan to consider this
issue in more detail elsewhere.
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