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In the Comment by Zumofen and Klafter~ZK! ~Phys. Rev. E, preceding paper! the authors, comparing their
results to those in a publication of ours@Benkadda, Kassibrakis, White, and Zaslavsky~BKWZ!# @Phys. Rev.
E 55, 4909 ~1997!#, state that ‘‘disagreement is regarded as resulting from conceptual differences in the
approaches rather than from numerical inaccuracies.’’ The papers discuss superdiffusion phenomena for the
standard map. In fact, we will show here that the numerical results of ZK contradict neither the numerical
results given in BKWZ nor the theory referenced there. At the same time we will indicate precisely why the
theory used in ZK has restricted applicability and is not universal. We also provide additional analytical and
numerical results in support of our conclusions.@S1063-651X~99!06803-8#

PACS number~s!: 05.45.2a, 47.52.1j, 05.60.2k, 47.53.1n
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Our reply is organized into sections on transport in ph
space with a self-similar structure, oscillations in distributi
data, comparison of the numerical results of Zumofen a
Klafter ~ZK! @1# with those of Benkadda, Kassibrakis, Whit
and Zaslavsky~BKWZ! @2#, limitations of the theory used in
@1#, and some conclusions.

I. SELF-SIMILARITY

After numerous investigations of different area-preserv
maps and equations, it became clear that particle trans
can be non-Gaussian, i.e., anomalous~see@3,4#, and refer-
ences therein!. A phenomenological approach to the proble
was proposed, based on a fractional generalization of
Fokker-Planck-Kolmogorov@5# ~FFPK! equation which we
present for the one dimensional case in the form

]b0P~x,t !

]tb0
5Da0b0

]a0P~x,t !

]uxua0
~x,t→`!, ~1!

with fractionala0 ,b0 , giving

^uxua0&;Da0b0
tb0 ~2!

or

^uxu2&;Da0b0

2/a0 tm, ~3!

with transport exponent

m52b0 /a0 ~4!

if we accept the existence of the asymptotic self-similarity
P(x,t). The coefficient
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Da0b0
5^^uDxua0/Dtb0&& ~5!

is defined through an elementary stepuDxu performed during
time intervalDt in the same sense as for the derivation of t
usual FPK equation. There exists a very detailed discus
of limitations to the applicability of Eq.~1!, and of how the
limits x,t→` should be considered to obtain space-tim
self-similarity ~see@3,4#, and references therein!. More im-
portantly, the existence of different intermediate asympto
in time was demonstrated for all kinds of distributions a
their moments. This necessitates a careful use of the e
nentsm, a0 ,b0 and any other significant parameters in a
tempts to understand the consequences of a proposed m
nism for the origin of the anomalous transport.

II. OSCILLATIONS

There were numerous observations thatm is not universal
and depends on a control parameterK of the system. More
precisely it was shown thatm depends on the phase spa
structure, on the vicinity of the system to some bifurcati
values ofK, etc.~see references in@3,4#!. A crucial question
is to finda0 ,b0 in Eqs.~1! and~2! from first principles, i.e.,
from dynamics, or more generally the set ofa0 ,b j in

^uxua0&5const3(
j
Db j

tb j ~6!

including the possibility of a spread ofb near b0 , which
actually is the case.~We simplify the situation and consider
fixed a0 which also can be spread.!

Since them5m(K) is nonuniversal, we can select aspe-
cial value of K for which a convenient approach can wor
For the standard map we selectK5Kc56.476 939... for
which there exists a hierarchical set of islands 5-11-11-1
3761 ©1999 The American Physical Society
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in the phase space@2#. These islands belong to the accele
tor mode, and their boundaries are sticky, giving rise to
superdiffusion withm.1. There are other special values
K in @3,4# which one can use, but the analytical approa
should be specified depending on the situation.

In @6,7,3,4# a renormalization group~RG! approach was
introduced for the case of the hierarchical island structu
The FFPK equation should be invariant under theR̂ trans-
form

R̂: Dx85lS
21/2Dx, Dt85lTDt, ~7!

wherelS,1 is a scaling parameter for the island area a
lT.1 is the same for the period of an orbit near the isla
elliptic point. BothlS andlT can be obtained from the equa
tions of motion or from a simulation with high accurac
Applying R̂n to Eq. ~1! or Eq. ~5! one can obtain a fixed
point value in the limitn→`,

lim
n→`

~lS
2a0/2/lT

b!n51 ~8!

or for solutions of Eq.~8!

b j5
1

2
a0m12p i j / ln lT ~ j 50,61, . . . !, ~9!

with

m52b0 /a05u ln lSu/ ln lT . ~10!

Applying Eq. ~9! to Eq. ~6!, we obtain

^uxua0&5const3Db0
tma0/2

3H 112(
j 51

`

~Db j
/Db0

!cosS 2p j

ln lT
ln t D J .

~11!

The expression obtained, in addition to the power law
transport with exponentm, has a lnt-periodic dependence
with period

Tln5 ln lT . ~12!

The formula Eq.~11! provides an analytical expression form
~see@3,4#! as well as log-periodic~in time! dependence o
transport and all other probability distribution function
~PDF! including distributions of the Poincare´ recurrences
and exit times since all PDF satisfy the same RG transfo
Eq. ~7! ~see also@6,7#!.

We also obtained the periodTln which can be compared t
the simulation results ifa0 is known. The formula Eq.~11! is
a new one for the explanation of chaotic anomalous trans
in dynamical systems, and its more detailed analysis will
considered elsewhere. Here, we have to mention only
the periodTln in Eq. ~11! is proportional to lnlT . Just this
property was derived in@3,4# and confirmed numerically to
high accuracy for three periods both for the web map@3,4#
and for the standard map@2#. The phenomenon of log peri
odicity is well known in the theory of phase transitions@8#,
structures with fractal geometry@9#, branching random pro
-
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cesses@10#, Weierstrass random walk@11#, dynamical sys-
tems @12–14#, and other cases~see review@15#!. The log-
time periodicity was observed in our simulations@3,4,2,16#
for chaotic dynamical systems andit appears again in@1# in
their Figs. 2–4~although without references!. These simula-
tions nontrivially confirm the existence of the RG proper
and also raise the immediate question:What slope of the
oscillating curve should be compared to any given theo
Even averaging over time is not trivial and depends on
time window.

III. DATA COMPARISON

Now we would like to discuss the numbers resulting fro
the simulations. Equation~10! for m, obtained in@6,7#, was
applied to different cases when the renormalization the
for the island hierarchy can be applied. In particular, t
comparison was made in@2# for the standard map withK
5Kc . The results werem51.4260.15~simulation! and 1.44
60.02 @from Eq. ~10!#. It is seen from Fig. 4 of@1# that
mP~1.3–1.5! due to oscillations, which does not contradi
our results~it is even mentioned in Fig. 4 of@1# thatm51.4!.

Assuming the power tail distributions for the Poincar´-
recurrence distributionPrec(t) and exit-time distribution
Pexit(t),

Prec~ t !;1/tg, Pexit~ t !;1/tg1, ~13!

for the same case of hierarchical islands of the acceler
mode, it was shown in@3,4# that

g521m. ~14!

It was also explained in@3,4# that for a careful choice of a
domain near an island boundary~in the trapping zone! one
has g15g and theng5g153.4260.15, which is in good
agreement with the valueg53.5 obtained in@2#. The reason
for this comment was explained in great detail in@4,2#: dis-
tributions of the Poincare´ recurrences ‘‘collect’’ global in-
formation about the full phase space, while the exit-time d
tribution describes properties of a local domain from whi
exits are considered.Nevertheless, the article@1# attacks the
formulag1521m †see Eq.~4! of @1# ‡, neglecting our com-
ments and without appropriate restrictions in application
the formula. That leads to an inferred discrepancy of so
numerical results, which, in fact,does not exist.

Let us compare the simulation data of@1# ~it is Fig. 2 of
@1# which is relevant to us! to our results of@2#. Thecstick(t)
in @1# corresponds to ourPexit(t) in Eq. ~13!. First of all,
from Fig. 2 of@1#, we havegmin2151.260.1 as the minimal
value andgmax2152.260.1 as the maximal value.~The21
occurs to convert between integral and differential proba
ity distributions.! The large rangegmin , gmax is due to the
oscillations. At this point we have to emphasize that all o
estimations ofg were based on the separation of differe
periods, or hierarchical zones, and on considering separa
gmin ~see Fig. 7 of@2#! and gmax ~see Fig. 8 of@2#!. The
valuesgmax and gmin from Fig. 2 of @1# coincide with our
results in Figs. 7 and 8 in@2# within the error bars. The
maximal slope~see Fig. 8 of@2#! corresponds to the perio
of time of the deepest penetration of flights into the hier
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chical island structure. Note that only a specific range of ti
values can be discussed, the truly asymptotic value of
slope is not determined by the data, and asymptotic con
gence arguments cannot bound the slope for any finite le
experiment.

Concluding this part of the discussion, we arrive at a
proximately the same values form andg if one considers the
maximal values of the oscillating slopes of the distributio
as was remarked and emphasized in all our publications
cluding the criticized article@2#. In other words, the differ-
ence in the results of simulations in@2# and@1#, is negligible,
contradicting the claim of@1# if one makes a correct com
parison.

IV. LIMITATIONS TO KZ THEORY

Let us comment on the theory that has been used
@17,18# and@1#. We see two serious restrictions to the theo
The first one is related to Eqs.~8! and ~9! of @1# where the
trapping-time distribution

c~r ,t !;t2g2d~r 2vt ! ~15!

is proportional to ad function with constant velocityv. This
assumption is mentioned following Eq.~5! of @1#. In the
standard map for the valueKc56.476 939 corresponding t
the accelerator mode the flights are inp and the ‘‘velocity’’
is an accelerationa5K sinx, so in our case their distribution
actually has the form

c~p,t !;t2g3d~p2at!, ~16!

with constant accelerationa.
Howeveruse of distribution (16) or (15) for long time i

not valid. Natural limitations for the time of applicability ca
be obtained in different ways. Here, a straightforward sim
lation will be used. ForK5Kc we pick a trajectory with
flights, cut a piece of the trajectory that corresponds to
flight of a length of 1.23104 steps, and put this part of th
trajectory on the torus (x,p)P(0,2p). The results are pre
sented in Figs. 1–3. In Fig. 1 we see a fairly strong sprea

FIG. 1. A depiction of a flight trajectory of the length 1.
3104 steps~time! on the torus~x,p; mod 2p! displays a broad
distribution in the phase space.
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the flight in the phase space with additional trapping in ti
next generation islands. In Figs. 2 and 3 we see distributi
C(x), C(p) for the same flight. These distributions are ve
broad and the same breadth occurs in the distribution of
accelerationa5Dp/Dt5K sinx. Observing other flights we
conclude that there is always a dispersionDa which for large
observational timet0;106 creates a huge dispersion in th
argument of thed function. This gives a limitation for the
strong coupling model of@17,18# to

t0&102– 103. ~17!

The d-function condition with constantv or constant a can
be used only to describe processes in which the comp
tional (or experimental) time is fairly short.

FIG. 2. Distribution of coordinates~80 bins! for the same flight
as in Fig. 1 shows about 10% width relative to the full phase sp
and about 1% for peaks that correspond to penetration of the fl
into the smaller island chain of the next generation~dark tiny is-
lands in Fig. 1!.

FIG. 3. The same as in Fig. 2 except for momentum. Ordinat
in values of 1023.
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The second restriction comes from the way the result
~11! of @1# was obtained in@17,18# ~see also references i
@1#!. Starting from Eq.~7! of @1# and performing an inverse
Fourier transform, the authors of@1# use an expansion o
exp(ikr) in powers of k. Because of the presence ofd(r
2vt) this means the occurrence of terms like (kt)n. Then
the limit k→0, t→` is not properly defined and there a
different asymptotics. Their choice depends on a model a
particularly, on the velocity spread valueDv or the accelera-
tion spreadDa in the case of the accelerator mode. T
origin of this difficulty is due to the double limit (r ,t)→`
simultaneously but in different ways depending on t
model.

We also need to mention that the result Eq.~11! of @1#,
even with restrictions, does not predict values ofm andg but
makes their connection within a fairly narrow interval due
the log-time oscillations.

V. CONCLUSION

In conclusion to our Reply, we would like to mention th
following points.
k

u-
.

q.

d,

~a! We have derived the log-time oscillations for the PD
and the moments, which were observed before in@2–4#
and which also are displayed in Figs. 2–4 of@1#. The
derivation assumes the existence of the RG transfo
Eq. ~7!. In this sense the curves, obtained in@1#, con-
firm our previous results with more extensive comp
tations.

~b! The values ofm andgmin , gmax obtained from Fig. 2 of
@1# reasonably coincide with those obtained in@2# if the
same things are compared.

~c! Our simulation shows that the strong coupling mod
of @1# using thed-function approximation for flights
fails for a large time (t.102– 103) due to the spread
ing of the velocity and acceleration of flights.

~d! The conflict of results appears in@1# when the theory of
@17,18# is applied to a large time interval where th
theory is not applicable. We assume that an additio
time applicability restriction exists for the model of@1#
arising from the conditions for the power expansion
the exp(ikr) used in@17,18#. We plan to consider this
issue in more detail elsewhere.
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